Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38743208

ABSTRACT

Non-small cell lung cancer (NSCLC) is a common cancer with several accepted treatments, such as chemotherapy, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, and immune checkpoint inhibitors. Nevertheless, NSCLC cells often become insensitive to these treatments, and therapeutic resistance is a major reason NSCLC still has a high mortality rate. The induction of therapeutic resistance in NSCLC often involves hedgehog, and suppression of hedgehog can increase NSCLC cell sensitivity to several conventional therapies. In our previous work, we demonstrated that the marine antimicrobial peptide tilapia piscidin 4 (TP4) exhibits potent anti-NSCLC activity in both EGFR-WT and EGFR-mutant NSCLC cells. Here, we sought to further explore whether hedgehog might influence the sensitivity of NSCLC cells to TP4. Our results showed that hedgehog was activated by TP4 in both WT and EGFR-mutant NSCLC cells and that pharmacological inhibition of hedgehog by vismodegib, a Food and Drug Administration-approved hedgehog inhibitor, potentiated TP4-induced cytotoxicity. Mechanistically, vismodegib acted by enhancing TP4-mediated increases in mitochondrial membrane potential and intracellular reactive oxygen species (ROS). MitoTempo, a specific mitochondrial ROS scavenger, abolished vismodegib/TP4 cytotoxicity. The combination of vismodegib with TP4 also reduced the levels of the antioxidant proteins catalase and superoxide dismutase, and it diminished the levels of chemoresistance-related proteins, Bcl-2 and p21. Thus, we conclude that hedgehog regulates the cytotoxic sensitivity of NSCLC cells to TP4 by protecting against mitochondrial dysfunction and suppressing oxidative stress. These findings suggest that combined treatment of vismodegib and TP4 may be a promising therapeutic strategy for NSCLC.

2.
Bone Joint Res ; 13(4): 157-168, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38569602

ABSTRACT

Aims: Osteosarcoma is the most common primary bone malignancy among children and adolescents. We investigated whether benzamil, an amiloride analogue and sodium-calcium exchange blocker, may exhibit therapeutic potential for osteosarcoma in vitro. Methods: MG63 and U2OS cells were treated with benzamil for 24 hours. Cell viability was evaluated with the MTS/PMS assay, colony formation assay, and flow cytometry (forward/side scatter). Chromosome condensation, the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay, cleavage of poly-ADP ribose polymerase (PARP) and caspase-7, and FITC annexin V/PI double staining were monitored as indicators of apoptosis. Intracellular calcium was detected by flow cytometry with Fluo-4 AM. The phosphorylation and activation of focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) were measured by western blot. The expression levels of X-linked inhibitor of apoptosis protein (XIAP), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), SOD1, and SOD2 were also assessed by western blot. Mitochondrial status was assessed with tetramethylrhodamine, ethyl ester (TMRE), and intracellular adenosine triphosphate (ATP) was measured with BioTracker ATP-Red Live Cell Dye. Total cellular integrin levels were evaluated by western blot, and the expression of cell surface integrins was assessed using fluorescent-labelled antibodies and flow cytometry. Results: Benzamil suppressed growth of osteosarcoma cells by inducing apoptosis. Benzamil reduced the expression of cell surface integrins α5, αV, and ß1 in MG63 cells, while it only reduced the expression of αV in U2OS cells. Benzamil suppressed the phosphorylation and activation of FAK and STAT3. In addition, mitochondrial function and ATP production were compromised by benzamil. The levels of anti-apoptotic proteins XIAP, Bcl-2, and Bcl-xL were reduced by benzamil. Correspondingly, benzamil potentiated cisplatin- and methotrexate-induced apoptosis in osteosarcoma cells. Conclusion: Benzamil exerts anti-osteosarcoma activity by inducing apoptosis. In terms of mechanism, benzamil appears to inhibit integrin/FAK/STAT3 signalling, which triggers mitochondrial dysfunction and ATP depletion.

3.
Int J Hyperthermia ; 41(1): 2310017, 2024.
Article in English | MEDLINE | ID: mdl-38350654

ABSTRACT

Objective: Gastric cancer with peritoneal metastasis is considered to be final stage gastric cancer. One current treatment approach for this condition is combined cytoreductive surgery with hyperthermic intraperitoneal chemotherapy (HIPEC). However, the therapeutic mechanisms of HIPEC remain largely undescribed. Method: In order to assess the cellular effects of HIPEC in vitro, we treated AGS human gastric adenocarcinoma cells with or without 5-fluorouracil (5-Fu) at 37 °C or at 43 °C (hyperthermic temperature) for 1 h followed by incubation at 37 °C for 23 h. The impacts of hyperthermia/5-Fu on apoptosis, cell survival signals, oxidative stress, chemoresistance-related proteins and programmed death-ligand 1 (PD-L1) expression were measured. Results: Our results showed that hyperthermia potentiates 5-Fu-mediated cytotoxicity in AGS cells. Furthermore, the combination of 5-Fu and hyperthermia reduces levels of both phosphorylated STAT3 and STAT3, while increasing the levels of phosphorylated Akt and ERK. In addition, 5-Fu/hyperthermia enhances reactive oxygen species and suppresses superoxide dismutase 1. Chemoresistance-related proteins, such as multidrug resistance 1 and thymidylate synthase, are also suppressed by 5-Fu/hyperthermia. Interestingly, hyperthermia enhances 5-Fu-mediated induction of glycosylated PD-L1, but 5-Fu-mediated upregulation of PD-L1 surface expression is prevented by hyperthermia. Conclusion: Taken together, our findings provide insights that may aid in the development of novel therapeutic strategies and enhanced therapeutic efficacy of HIPEC.


Subject(s)
Hyperthermia, Induced , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , B7-H1 Antigen/therapeutic use , Drug Resistance, Neoplasm , Hyperthermia, Induced/methods , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Combined Modality Therapy
4.
Article in English | MEDLINE | ID: mdl-37523113

ABSTRACT

Non-small cell lung cancer (NSCLC) is among the deadliest cancers worldwide. Despite the recent introduction of several new therapeutic approaches for the disease, improvements in overall survival and progression-free survival have been minimal. Conventional treatments for NSCLC include surgery, chemotherapy and radiotherapy. Except for surgery, these treatments can impair a patient's immune system, leaving them susceptible to bacterial infections. As such, Staphylococcus aureus infections are commonly seen in NSCLC patients receiving chemotherapy, and a major constituent of the S. aureus cell surface, lipoteichoic acid (LTA), is thought to stimulate NSCLC cancer cell proliferation. Thus, inhibition of LTA-mediated cell proliferation might be a useful strategy for treating NSCLC. Epinecidin-1 (EPI), a marine antimicrobial peptide, exhibits broad-spectrum antibacterial activity, and it also displays anti-cancer activity in glioblastoma and synovial sarcoma cells. Furthermore, EPI has been shown to inhibit LTA-induced inflammatory responses in murine macrophages. Nevertheless, the anti-cancer and anti-LTA activities of EPI and the underlying mechanisms of these effects have not been fully tested in the context of NSCLC. In the present study, we demonstrate that EPI suppresses LTA-enhanced proliferation of NSCLC cells by neutralizing LTA and blocking its effects on toll-like receptor 2 and interleukin-8. Moreover, we show that EPI induces necrotic cell death via mitochondrial damage, elevated reactive oxygen species levels, and disrupted redox balance. Collectively, our results reveal dual anti-cancer activities of EPI in NSCLC, as the peptide not only directly kills cancer cells but it also blocks LTA-mediated enhancement of cell proliferation.

5.
Environ Toxicol ; 37(11): 2728-2742, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36214339

ABSTRACT

Fructose overconsumption promotes tumor progression. Neuroblastoma is a common extracranial tumor with about 50% 5-year survival rate in high-risk children. The anti-tumor effect of Tribulus terrestris might bring new hope to neuroblastoma therapy. However, whether fructose disturbs the therapeutic effect of T. terrestris is currently unknown. In this study, the mouse neuroblastoma cell line, Neuro 2a (N2a) cells, was used to investigate the therapeutic effects of T. terrestris extract at various dosages (0.01, 1, 100 ng/ml) in regular EMEM medium or extra added fructose (20 mM) for 24 h. 100 ng/ml T. terrestris treatment significantly reduced the cell viability, whereas the cell viabilities were enhanced at the dosages of 0.01 or 1 ng/ml T. terrestris in the fructose milieu instead. The inhibition effect of T. terrestris on N2a migration was blunted in the fructose milieu. Moreover, T. terrestris effectively suppressed mitochondrial functions, including oxygen consumption rates, the activities of electron transport enzymes, the expressions of mitochondrial respiratory enzymes, and mitochondrial membrane potential. These suppressions were reversed in the fructose group. In addition, the T. terrestris-suppressed mitofusin and the T. terrestris-enhance mitochondrial fission 1 protein were maintained at basal levels in the fructose milieu. Together, these results demonstrated that T. terrestris extract effectively suppressed the survival and migration of neuroblastoma via inhibiting mitochondrial oxidative phosphorylation and disturbing mitochondrial dynamics. Whereas, the fructose milieu blunted the therapeutic effect of T. terrestris, particularly, when the dosage is reduced.


Subject(s)
Fructose , Neuroblastoma , Animals , Cell Line , Fructose/pharmacology , Mice , Mitochondria , Neuroblastoma/drug therapy , Plant Extracts/pharmacology , Tribulus
6.
Int J Mol Sci ; 23(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35628344

ABSTRACT

Hypertension is associated with blood-brain barrier alteration and brain function decline. Previously, we established the 2-kidney,1-clip (2K1C) hypertensive mice model by renin-angiotensin system (RAS) stimulating. We found that 2K1C-induced hypertension would impair hippocampus-related memory function and decrease adult hippocampal neurogenesis. Even though large studies have investigated the mechanism of hypertension affecting brain function, there remains a lack of efficient ways to halt this vicious effect. The previous study indicated that running exercise ameliorates neurogenesis and spatial memory function in aging mice. Moreover, studies showed that exercise could normalize RAS activity, which might be associated with neurogenesis impairment. Thus, we hypothesize that running exercise could ameliorate neurogenesis and spatial memory function impairment in the 2K1C-hypertension mice. In this study, we performed 2K1C surgery on eight-weeks-old C57BL/6 mice and put them on treadmill exercise one month after the surgery. The results indicate that running exercise improves the spatial memory and neurogenesis impairment of the 2K1C-mice. Moreover, running exercise normalized the activated RAS and blood-brain barrier leakage of the hippocampus, although the blood pressure was not decreased. In conclusion, running exercise could halt hypertension-induced brain impairment through RAS normalization.


Subject(s)
Hypertension , Physical Conditioning, Animal , Animals , Blood-Brain Barrier , Hippocampus , Mice , Mice, Inbred C57BL , Neurogenesis , Permeability , Physical Conditioning, Animal/methods , Renin-Angiotensin System , Spatial Memory
7.
Gerontology ; 64(6): 551-561, 2018.
Article in English | MEDLINE | ID: mdl-29734165

ABSTRACT

BACKGROUND: Aging impairs hippocampal neuroplasticity and hippocampus-related learning and memory. In contrast, exercise training is known to improve hippocampal neuronal function. However, whether exercise is capable of restoring memory function in old animals is less clear. OBJECTIVE: Here, we investigated the effects of exercise on the hippocampal neuroplasticity and memory functions during aging. METHODS: Young (3 months), middle-aged (9-12 months), and old (18 months) mice underwent moderate-intensity treadmill running training for 6 weeks, and their hippocampus-related learning and memory, and the plasticity of their CA1 neurons was evaluated. RESULTS: The memory performance (Morris water maze and novel object recognition tests), and dendritic complexity (branch and length) and spine density of their hippocampal CA1 neurons decreased as their age increased. The induction and maintenance of high-frequency stimulation-induced long-term potentiation in the CA1 area and the expressions of neuroplasticity-related proteins were not affected by age. Treadmill running increased CA1 neuron long-term potentiation and dendritic complexity in all three age groups, and it restored the learning and memory ability in middle-aged and old mice. Furthermore, treadmill running upregulated the hippocampal expressions of brain-derived neurotrophic factor and monocarboxylate transporter-4 in middle-aged mice, glutamine synthetase in old mice, and full-length TrkB in middle-aged and old mice. CONCLUSION: The hippocampus-related memory function declines from middle age, but long-term moderate-intensity running effectively increased hippocampal neuroplasticity and memory in mice of different ages, even when the memory impairment had progressed to an advanced stage. Thus, long-term, moderate intensity exercise training might be a way of delaying and treating aging-related memory decline.


Subject(s)
Aging , Hippocampus , Memory Disorders , Memory/physiology , Motor Activity/physiology , Aging/physiology , Aging/psychology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Glutamate-Ammonia Ligase/metabolism , Hippocampus/physiology , Hippocampus/physiopathology , Maze Learning , Membrane Glycoproteins/metabolism , Memory Disorders/metabolism , Memory Disorders/physiopathology , Memory Disorders/prevention & control , Memory Disorders/psychology , Mice , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/metabolism , Neurons/physiology , Physical Conditioning, Animal/methods , Physical Exertion , Protein-Tyrosine Kinases/metabolism
8.
Front Aging Neurosci ; 10: 73, 2018.
Article in English | MEDLINE | ID: mdl-29615895

ABSTRACT

Epidemiological studies suggest there is an association between midlife hypertension and increased risk of late-life Alzheimer's disease (AD). However, whether hypertension accelerates the onset of AD or is a distinct disease that becomes more prevalent with age (comorbidity) remains unclear. This study aimed to test the possible relationship between hypertension and AD pathogenesis. Two animal models were used in this study. For the first model, 7-month-old Lanyu-miniature-pigs were given the abdominal aortic constriction operation to induce hypertension and their AD-related pathologies were assessed at 1, 2, and 3 months after the operation. The results showed that hypertension was detected since 1 month after the operation in the pigs. Levels of Aß, amyloid precursor protein, RAGE, phosphorylated tau and activated GSK3ß in the hippocampi increased at 3 months after the operation. For the second model, 3xTg mice at the ages of 2, 5, and 7 months were subjected to the "two-kidney-one-clip" operation to induce hypertension. One month after the operation, blood pressure was significantly increased in the 3xTg mice in any age. Aß, amyloid plaque load, and phosphorylated tau levels increased in the operated mice. Furthermore, the operation also induced shrinkage in the dendritic arbor of hippocampal dentate gyrus granule neurons, leakage in the blood-brain barrier, activation in microglia, and impairment in the hippocampus-dependent learning and memory in the 3xTg mice. In conclusion, hypertension accelerates the onset of AD. Blood pressure control during midlife may delay the onset of AD.

9.
J Neural Transm (Vienna) ; 122(10): 1381-90, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26071020

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia in the elderly. Accumulation of Aß peptides in the brain has been suggested as the cause of AD (amyloid cascade hypothesis); however, the mechanism for the abnormal accumulation of Aß in the brains of AD patients remains unclear. A plethora of evidence has emerged to support a link between metabolic disorders and AD. This study was designed to examine the relationship between energy status and Aß production. Neuro 2a neuroblastoma cells overexpressing human amyloid precursor protein 695 (APP cells) were cultured in media containing different concentrations of glucose and agonist or antagonist of AMP-activated-protein-kinase (AMPK), a metabolic master sensor. The results showed that concentrations of glucose in the culture media were negatively associated with the activation statuses of AMPK in APP cells, but positively correlated with the levels of secreted Aß. Modulating AMPK activities affected the production of Aß. If APP cells were cultured in high glucose medium (i.e., AMPK was inactive), stimulation of AMPK activity decreased the production levels of Aß. On the contrary, if APP cells were incubated in medium containing no glucose (i.e., AMPK was activated), inhibition of AMPK activity largely increased Aß production. As AMPK activation is a common defect in metabolic abnormalities, our study supports the premise that metabolic disorders may aggravate AD pathogenesis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Amyloid beta-Peptides/metabolism , Glucose/metabolism , Peptide Fragments/metabolism , AMP-Activated Protein Kinases/antagonists & inhibitors , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Cell Line, Tumor , Cell Survival/physiology , Culture Media/metabolism , Enzyme Activators/pharmacology , Enzyme-Linked Immunosorbent Assay , Humans , Immunoblotting , Immunoprecipitation , Protein Kinase Inhibitors/pharmacology , Ribonucleotides/pharmacology
10.
J Alzheimers Dis ; 41(3): 855-65, 2014.
Article in English | MEDLINE | ID: mdl-24685634

ABSTRACT

It has been demonstrated that peripheral injection of anti-amyloid-ß (Aß) antibodies to patients with Alzheimer's disease (AD) and AD transgenic mice facilitate Aß clearance. We hypothesized that peripheral circulating Aß-binding proteins also possess the ability to enhance Aß clearance and the levels of circulating Aß-binding proteins could serve as early AD biomarkers. Circulating Aß-binding proteins were isolated from plasma and identified by LC-MS/MS. Their levels were compared among non-demented individuals without AD family history (ND), with AD family history (ND-FH), and patients with mild AD. The results showed that most of the identified Aß-binding proteins were apolipoproteins, i.e., apoA-I, apoB-100, apoC-III, and apoE. Aß bound preferentially to apoA-I-enriched HDL, followed by apoC-III- and apoE-enriched VLDL, and bound less favorably to apoB-100-enriched LDL. Levels of apoA-I were reduced in AD patients and could be used to discriminate AD from ND groups (AUC: 0.93); whereas levels of apoC-III were reduced in both ND-FH and AD groups and could be used to differentiate ND-FH from ND individuals (AUC: 0.81). Both the levels of apoA-1 and apoC-III positively correlated with CASI and MMSE scores. In conclusion, these results suggest that plasma apoA-I could be a sensitive AD biomarker and individuals with low plasma levels of apoC-III are at risk for AD.


Subject(s)
Alzheimer Disease/blood , Amyloid beta-Peptides/blood , Apolipoprotein C-III/blood , Aged , Alzheimer Disease/pathology , Apolipoprotein A-I/blood , Databases, Factual/statistics & numerical data , Female , Humans , Male , Mass Spectrometry , Middle Aged , Protein Binding , ROC Curve , Statistics, Nonparametric
11.
Curr Alzheimer Res ; 11(1): 4-10, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24251391

ABSTRACT

Accumulation, aggregation and deposition of the amyloid-ß (Aß) peptides in the brain are widely accepted as the central events in the pathogenesis of Alzheimer's disease (AD). Any factor that is capable of causing these events is potentially a risk factor for AD. In the last decade, evidence has accumulated to support the association between cerebral vascular diseases (CVD) and AD. CVD is known to induce amyloid deposition and affects the age of onset for sporadic AD; whereas, amyloid deposition has been shown to cause cerebrovascular degeneration. In this review, we propose a positive feedback loop between CVD and amyloid deposition. The disease cycle could be triggered by aging and/or other environmental factor-associated CVD, as in late-onset sporadic AD patients, or by over production of Aß, as in the familial AD patients and amyloid precursor protein transgenic animals.


Subject(s)
Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Brain/pathology , Brain/physiopathology , Cerebrovascular Disorders/pathology , Plaque, Amyloid/physiopathology , Animals , Brain/blood supply , Cerebrovascular Disorders/physiopathology , Humans , Plaque, Amyloid/pathology
12.
Curr Alzheimer Res ; 10(3): 298-308, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23036024

ABSTRACT

Cerebral hypoglycemia/hypometabolism is associated with Alzheimer's disease (AD) and is routinely used to assist clinical diagnosis of AD by brain imaging. However, whether cerebral hypoglycemia/hypometabolism contributes to the development of AD or is a response of reduced neuronal activity remains unclear. To investigate the causal relationship, we cultured the differentiated N2a neuroblastoma cells in glucose/pyruvate-deficient media (GDM). Shortly after the N2a cells cultured in the GDM, the mitochondria membrane potential was reduced and the AMP-activated-proteinkinase (AMPK), an energy sensor, was activated. Treatment of GDM not only increased the levels of tau phosphorylation at Ser(262) and Ser(396), but also increased the levels of active forms of GSK3α and GSK3ß, two known kinases for tau phosphorylation, of the N2a cells. The levels of activated Akt, a mediator downstream to AMPK and upstream to GSK3α/ß, were reduced by the GDM treatment. The effect of hypoglycemia was further examined in vivo by intracerebroventricular (icv) injection of streptozotocin (STZ) to the Wistar rats. STZ selectively injuries glucose transporter type 2-bearing cells which are primarily astrocytes in the rat brain, hence, interrupts glucose transportation from blood vessel to neuron. STZicv injection induced energy crisis in the brain regions surrounding the ventricles, as indicated by higher pAMPK levels in the hippocampus, but not cortex far away from the ventricles. STZ-icv treatment increased the levels of phosphorylated tau and activated GSK3ß, but decreased the levels of activated Akt in the hippocampus. The hippocampus-dependent spatial learning and memory was impaired by the STZ-icv treatment. In conclusion, our works suggest that hypoglycemia enhances the AMPK-Akt-GSK3 pathway and leads to tau hyperphosphorylation.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Hypoglycemia/complications , tau Proteins/metabolism , Alzheimer Disease/physiopathology , Animals , Brain/pathology , Cell Line, Tumor , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Glucose/deficiency , Hypoglycemia/metabolism , Immunoblotting , Immunohistochemistry , Male , Maze Learning , Membrane Potential, Mitochondrial , Mice , Phosphorylation , Rats , Rats, Wistar , Signal Transduction/physiology
13.
PLoS One ; 7(3): e33120, 2012.
Article in English | MEDLINE | ID: mdl-22412990

ABSTRACT

Accumulation of amyloid-ß (Aß) peptides in the brain is one of the central pathogenic events in Alzheimer's disease (AD). However, why and how Aß aggregates within the brain of AD patients remains elusive. Previously, we demonstrated hemoglobin (Hb) binds to Aß and co-localizes with the plaque and vascular amyloid deposits in post-mortem AD brains. In this study, we further characterize the interactions between Hb and Aß in vitro and in vivo and report the following observations: 1) the binding of Hb to Aß required iron-containing heme; 2) other heme-containing proteins, such as myoglobin and cytochrome C, also bound to Aß; 3) hemin-induced cytotoxicity was reduced in neuroblastoma cells by low levels of Aß; 4) Hb was detected in neurons and glial cells of post-mortem AD brains and was up-regulated in aging and APP/PS1 transgenic mice; 5) microinjection of human Hb into the dorsal hippocampi of the APP/PS1 transgenic mice induced the formation of an envelope-like structure composed of Aß surrounding the Hb droplets. Our results reveal an enhanced endogenous expression of Hb in aging brain cells, probably serving as a compensatory mechanism against hypoxia. In addition, Aß binds to Hb and other hemoproteins via the iron-containing heme moiety, thereby reducing Hb/heme/iron-induced cytotoxicity. As some of the brain Hb could be derived from the peripheral circulation due to a compromised blood-brain barrier frequently observed in aged and AD brains, our work also suggests the genesis of some plaques may be a consequence of sustained amyloid accretion at sites of vascular injury.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Hemoglobins/metabolism , Plaque, Amyloid/metabolism , Aging/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Heme/metabolism , Hemoglobins/genetics , Humans , Male , Mice , Mice, Transgenic , Protein Binding , Protein Interaction Domains and Motifs
SELECTION OF CITATIONS
SEARCH DETAIL
...